Glycerol disrupts tight junction-associated actin microfilaments, occludin, and microtubules in Sertoli cells.
نویسندگان
چکیده
Intratesticular injections of glycerol have been shown to result in a marked and prolonged reduction of spermatogenesis, accompanied by increased permeability of the blood-testis barrier. Because the permeability of the blood-testis barrier is regulated by Sertoli cell tight junctions, and tight junction organization is regulated by the cytoskeleton, we undertook to examine the effects of glycerol treatment on cytoskeletal actin microfilaments and microtubules, and on the tight junction protein, occludin, in Sertoli cells. Adult rats received a single intratesticular injection of either saline (controls) or a 10% glycerol solution. At 24 hours and 7, 15, and 21 days after injection, testes were collected and prepared for routine histology, cryosectioning, or whole seminiferous tubule immunohistochemical staining; and the preparations were viewed by light and confocal microscopy. In saline-injected testes, Sertoli cells had a cytoskeletal and junctional organization that resembled that of normal testes. F-actin microfilaments, located in the basal region, were arranged in regular bundles or chords that circumscribed the perimeter of each Sertoli cell at the level of the tight junction. Occludin colocalized with tight junction-associated actin filament distribution and microtubules formed a geometric array associated with spermatogenic cells. In contrast, in glycerol-treated Sertoli cells, microfilament and microtubule organization and occludin distribution were partially or completely disrupted. From these results we conclude that glycerol treatment either directly or indirectly disrupts tight junction-associated F-actin and occludin and tubulin organization in rat Sertoli cells. Perturbation of the tight junction-associated proteins could explain the increase in permeability of the blood-testis barrier observed after glycerol treatment. Impaired spermatogenesis following glycerol treatment is likely a consequence of a leaky blood testis barrier and disrupted Sertoli cell cytoskeleton. Glycerol injections may serve as a useful tool in studying the relationship between cytoskeletal organization and the stabilization of Sertoli-Sertoli cell junctions.
منابع مشابه
Olaquindox disrupts tight junction integrity and cytoskeleton architecture in mouse Sertoli cells
Sertoli cells, by creating an immune-privileged and nutrition supporting environment, maintain mammalian spermatogenesis and thereby holds the heart of male fertility. Olaquindox, an effective feed additive in livestock industry, could potentially expose human into the risk of biological hazards due to its genotoxicity and cytotoxicity, highlighting the significance of determining its bio-safet...
متن کاملActin Depolymerization Disrupts Tight Junctions via Caveolae-mediated Endocytosis□V
The tight junction (TJ) determines epithelial barrier function. Actin depolymerization disrupts TJ structure and barrier function, but the mechanisms of this effect remain poorly understood. The goal of this study was to define these mechanisms. Madin-Darby canine kidney (MDCK) cells expressing enhanced green fluorescent protein-, enhanced yellow fluorescent protein-, or monomeric red fluoresce...
متن کاملPolarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells
Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis ...
متن کاملActin depolymerization disrupts tight junctions via caveolae-mediated endocytosis.
The tight junction (TJ) determines epithelial barrier function. Actin depolymerization disrupts TJ structure and barrier function, but the mechanisms of this effect remain poorly understood. The goal of this study was to define these mechanisms. Madin-Darby canine kidney (MDCK) cells expressing enhanced green fluorescent protein-, enhanced yellow fluorescent protein-, or monomeric red fluoresce...
متن کاملSENP3 grants tight junction integrity and cytoskeleton architecture in mouse Sertoli cells
Germ cells develop in a sophisticated immune privileged microenvironment provided by specialized junctions contiguous the basement membrane of the adjacent Sertoli cells that constituted the blood-testis barrier (BTB) in seminiferous epithelium of testis in mammals. Deciphering the molecular regulatory machinery of BTB activity is central to improve male fertility and the role of post-translati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of andrology
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2000